Principal component analysis based methods in bioinformatics studies
نویسندگان
چکیده
In analysis of bioinformatics data, a unique challenge arises from the high dimensionality of measurements. Without loss of generality, we use genomic study with gene expression measurements as a representative example but note that analysis techniques discussed in this article are also applicable to other types of bioinformatics studies. Principal component analysis (PCA) is a classic dimension reduction approach. It constructs linear combinations of gene expressions, called principal components (PCs). The PCs are orthogonal to each other, can effectively explain variation of gene expressions, and may have a much lower dimensionality. PCA is computationally simple and can be realized using many existing software packages. This article consists of the following parts. First, we review the standard PCA technique and their applications in bioinformatics data analysis. Second, we describe recent 'non-standard' applications of PCA, including accommodating interactions among genes, pathways and network modules and conducting PCA with estimating equations as opposed to gene expressions. Third, we introduce several recently proposed PCA-based techniques, including the supervised PCA, sparse PCA and functional PCA. The supervised PCA and sparse PCA have been shown to have better empirical performance than the standard PCA. The functional PCA can analyze time-course gene expression data. Last, we raise the awareness of several critical but unsolved problems related to PCA. The goal of this article is to make bioinformatics researchers aware of the PCA technique and more importantly its most recent development, so that this simple yet effective dimension reduction technique can be better employed in bioinformatics data analysis.
منابع مشابه
Feature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملMultivariate analysis of variance test for gene set analysis
MOTIVATION Gene class testing (GCT) or gene set analysis (GSA) is a statistical approach to determine whether some functionally predefined sets of genes express differently under different experimental conditions. Shortcomings of the Fisher's exact test for the overrepresentation analysis are illustrated by an example. Most alternative GSA methods are developed for data collected from two exper...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملUsing Clustering and Factor Analysis in Cross Section Analysis Based on Economic-Environment Factors
Homogeneity of groups in studies those use cross section and multi-level data is important. Most studies in economics especially panel data analysis need some kinds of homogeneity to ensure validity of results. This paper represents the methods known as clustering and homogenization of groups in cross section studies based on enviro-economics components. For this, a sample of 92 countries which...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Briefings in bioinformatics
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2011